

Modelling changes in secondary inorganic aerosol formation and nitrogen deposition in Europe from 2005 to 2030

Jan Eiof Jonson¹, Hilde Fagerli¹, Thomas Scheuschner², and Svetlana Tsyro¹

¹Norwegian Meteorological Institute, Oslo, Norway

²Umweltbundesamt, Dessau-Roßlau Germany

Correspondence: Jan Eiof Jonson (j.e.jonson@met.no)

Abstract.

5

Secondary inorganic $PM_{2.5}$ particles are formed from SO_x , NO_x and ammonia emissions, through the formation of either ammonium sulphate or ammonium nitrate. EU limits and WHO guidelines for $PM_{2.5}$ levels are frequently exceeded in Europe, in particular in the winter months. In addition the critical loads for eutrophication are exceeded in most of the European continent. Further reductions in ammonia emissions and other PM precursors beyond the 2030 requirements could alleviate some of the health burden from fine particles, and also reduce the deposition of nitrogen to vulnerable ecosystems.

Using the regional scale EMEP/MSC-W model, we have studied the effects of year 2030 ammonia emissions on $PM_{2.5}$ concentrations and depositions of nitrogen in Europe in the light of present (2017) and past (2005) conditions. Our calculations show that in Europe the formation of $PM_{2.5}$ from ammonia to a large extent is limited by the ratio between the emissions of

- 10 ammonia on one hand, and SO_x plus NO_x , on the other hand. As the ratio of ammonia to SO_x and NO_x is increasing, the potential to further curb $PM_{2.5}$ levels through reductions in ammonia emissions is decreasing. Here we show that per gram of ammonia emissions mitigated, the resulting reductions in $PM_{2.5}$ levels simulated using 2030 emissions are about a factor of 2.6 lower than when 2005 emissions are used. However, this ratio is lower in winter, thus further reductions in the ammonia emissions in winter may have similar potentials as SO_x and NO_x in curbing $PM_{2.5}$ levels in this season.
- Following the expected reductions of ammonia emission, depositions of reduced nitrogen should also decrease in Europe. However, as the reductions in NO_x emission are larger than for ammonia, the fraction of total nitrogen (reduced plus oxidised nitrogen) deposited as reduced nitrogen is increasing and may exceed 60% in most of Europe by 2030. Thus the potential for future reductions in the exceedances of critical loads for eutrophication in Europe will mainly rely on the ability to reduce ammonia emissions.

1 Introduction

Concentrations of particles with a diameter of less than 2.5 μm (PM_{2.5}) have been decreasing in most of Europe since the turn of the century as a combined result of reductions in anthropogenic emissions of primary particles and gaseous PM_{2.5} precursors. Emissions of ammonia play a central role in the secondary particle formation, and are also major contributors to
the exceedances of critical loads for eutrophication (Tsyro et al., 2020). In most parts of Europe emissions of in particular SO_x (emitted predominantly as SO₂ but also as SO₄²⁻, (hereafter SO₄) and NO_x (NO + NO₂) have been steadily decreasing in the past decades. At the same time, emissions of ammonia have changed much less, decreasing in some European countries and increasing in others (see EMEP Status Report 1/2020 (2020), chapter 3 and Appendix B). Further reductions of SO_x, NO_x,

and ammonia emissions are required by the year 2030 according to the EU NEC2030 directive (https://www.eea.europa.eu/

- themes/air/air-pollution-sources-1/national-emission-ceilings), but the projected percentage reductions in ammonia emissions in NEC2030 are smaller than for SO_x and NO_x . In the atmosphere SO_2 is oxidised to SO_4 and NO_x to HNO_3 . Contrary to SO_x and NO_x , more than 90% of the ammonia emissions are from agriculture, with only minor contributions from industry and traffic (IIASA, 2020). As a result these emissions are in general not co-located with the SO_x and NO_x emissions. In addition the temporal distribution of the emissions differ, with ammonia emissions peaking in spring and summer, whereas
- anthropogenic SO_x and NO_x emissions in general peak in winter. In the fine mode, ammonium sulphate particles are first formed from ammonia and H_2SO_4 . Any excess ammonia can then form ammonium nitrate (NH_4NO_3) in thermodynamic equilibrium with HNO_3 (see e.g. Simpson et al. (2012)). When ammonia is in excess relative to both H_2SO_4 concentrations and the equilibrium with HNO_3 , the formation of ammonium salts will slow down at some point (when there is less acid available to react with ammonia), and free ammonia will be present. With ammonia emissions greatly exceeding SO_x and
- 40 NO_x emissions already before 2005, one could question the effects of small or moderate reductions in ammonia emissions on Secondary Inorganic Aerosols contributing to PM_{2.5} (SIA25), a major component in PM_{2.5}.

Using emissions as described in Jiang et al. (2020), Aksoyoglu et al. (2020) showed that the fraction of ammonium in SIA25 was similar when calculated with 1990 versus 2030 emissions. With 1990 versus 2030 emissions the fraction of sulphate in SIA25 dropped significantly, whereas the nitrate fraction increased, compensating for the reduction in sulphate In many air

- 45 pollution episodes in Europe involving $PM_{2.5}$, ammonium nitrate has accounted for a large portion of the aerosol mass (Petit et al., 2017; Vieno et al., 2016). With a large surplus of NH_3 relative to HNO_3 it could be that ammonium nitrate formation will be virtually unaffected by changes in ammonia emissions. Both NO_x and ammonia are relatively shortlived, with a lifetime in the atmosphere of about 1 day (Seinfeld and Pandis, 2016). Given the difference in both spatial and temporal distribution in the sources of ammonia, NO_x and SO_x , substantial local variability in the ratio between ammonia on one hand, and sulphate
- 50 and/or HNO₃ on the other hand, can be expected. Thus, locally the formation of SIA25 may be limited by the availability of

either ammonia or by HNO_3 and sulphat due to the lack of co-location of the sources of these species.

Here we apply the EMEP MSC-W model to investigate how $PM_{2.5}$ concentrations, and deposition of reduced nitrogen, have changed from 2005 to 2017. But the main focus is on model calculations for 2030, assuming that the NEC2030 requirements will be met. Given that ammonia concentrations in Europe are generally in substantial excess of HNO₃ concentrations, we

55 explore to what extent additional reductions in ammonia emissions will contribute to further reductions in ammonium and subsequently to reductions in PM_{2.5} levels, and to what extent the response to further ammonia emissions is linear. We try to answer this with a sensitivity study for PM_{2.5} for post NEC2030, applying step-wise additional ammonia emission reductions on top of the NEC2030 requirements holding all other emissions constant. At the same time we also investigate to what extent reductions in ammonia emissions may affect deposition of reduced nitrogen and the exceedance of critical loads for nitrogen 60 deposition.

2 Model description

The model calculations have been made with the EMEP MSC-W model (hereafter 'EMEP model'), version rv4.34, on 0.1 x 0.1 ° resolution for the domain between 30° W and 45° E and between 30 and 75° N. A detailed description of the EMEP model can be found in Simpson et al. (2012), with later model updates described in Simpson et al. (2020) and references therein. In
the EMEP model the composition of the metastable aqueous aerosols of the inorganic system NO₃⁻ – NH₄⁺ and water, and NH₃ – HNO₃ in the gas phase, are calculated using the MARS equilibrium model (Binkowski and Shankar, 1995). In Tsyro and Metzgert (2019) the EMEP model results using the MARS model are compared to model calculations with EQUSAM4clim (Metzger et al., 2016, 2018) giving very similar results.

- The EMEP model is available as open source code (see code availability) and is under continuous development receiving feedback from a host of users. It is regularly evaluated against measurements, see Gauss et al. (2017, 2018, 2019, 2020) for the most recent evaluations. Scatter plots of model versus measurements for the concentrations of several key species as well as for the wet depositions of reduced and oxidised nitrogen are shown in appendix A. The model performance is comparable for both 2005 and 2017, even though the selection of measurement sites differ for the two years. Measurements are available for subsets of common sites for the two years, in general showing comparable model to measurement biases for the concentrations
- of key species for the years 2005 and 2017. The EMEP model has also participated in model intercomparisons and model evaluations in a number of peer reviewed publications (Karl et al., 2019; Colette et al., 2011, 2012; Jonson et al., 2018). In Vivanco et al. (2018) depositions of sulphur and nitrogen species in Europe have been calculated by 14 regional models and compared to measurements, and in Theobald et al. (2018) the model calculated the trends in the wet deposition of sulphur as well as reduced and oxidised nitrogen from 6 models, including the EMEP model, are compared to measurements from 1990
- 80 to 2010. Both these two studies showed good results for the EMEP model.

2.1 Definition of the Critical Load for eutrophication

A Critical Load (CL) is defined as "a quantitative estimate of an exposure to one or more pollutants below which significant harmful effects on specified sensitive elements of the environment do not occur according to present knowledge" (Nilsson and Grennfelt, 1988). CLs are calculated for different receptors (e.g. terrestrial ecosystems, aquatic ecosystems), and a sensitive

85 element can be any part (or the whole) of an ecosystem or ecosystem process. CLs have been derived for several pollutants and different negative effects. Here we restrict ourselves to CL defined to avoid the eutrophying effects of Nitrogen deposition

(CLeutN). Like sulphur, nitrogen can also cause acidifying impacts in ecosystems, but the areas affected by acidification are strongly decreasing in Europe compared to earlier decades, and therefore the focus of this paper is on the eutrophying effects (Slootweg et al., 2015; EEA, 2014; Hettelingh et al., 2017).

- 90 The CLeutN for a site is either empirically derived or calculated from steady-state simple mass balance (SMB) equations. In the SMB method, non-harmful nitrogen-fixing processes are described mathematically and combined with a chemical criterion (e.g., an acceptable N concentration in the soil solution). This summation is then compared to the corresponding deposition value. Methods to compute CLs are summarised in the Mapping Manual of the ICP Modelling and Mapping CLRTAP (2017), (see also De Vries et al. (2015)), which is used within the Convention on Long-range Transboundary Air Pollution: https:
 95 //www.acceptable.org/10.ucorr.also.
- 95 //unece.org/40-years-clean-air.

If the deposition of the pollutant under consideration is greater than the CL at a site, the CL is designated as exceeded. Such site-specific exceedances can be summarised for different spatial entities (e.g. grid cells, countries). This method is called average accumulated exceedance, and is defined as the weighted average of exceedances for all ecosystems within the selected region, where the weights are the respective ecosystem areas (Posch et al., 2001).

100 The CL exceedances presented here were calculated using the current CL database, which is described in Hettelingh et al. (2017) and stored by the current Coordination Centre for Effects (CCE) at the German Federal Environmental Agency. This dataset is also used, among other things, to support European assessments and negotiations on emission reductions (Hettelingh et al., 2001; Reis et al., 2012; EEA, 2014).

3 Model runs

- 105 The EMEP model runs have been performed with 2017 meteorological conditions. In these model runs, emissions estimated for the years 2005, 2017, and projected for 2030, have been used. For the EU28 countries, the official EMEP emissions have been used for both the 2005 and 2017 model runs (as listed in EMEP Status Report 1/2020 (2020), appendix B). For the 2030 model runs the emissions for the individual EU28 countries are scaled from the 2005 emissions according to the NEC2030 obligations. The total emissions of ammonia, SO_x and NO_x in the EU28 countries in 2005, 2017 and 2030 are illustrated in
- Figure 1a. For all other countries and regions the 2005 and 2030 emissions have been provided by the International Institute for Applied Systems Analysis (IIASA) within the European FP7 project ECLIPSE (http://www.iiasa.ac.at/web/home/research/researchPrograms/air/ECLIPSEv5.html). In this study we use ECLIPSE version 6a (hereafter referred to as 'ECLIPSEv6a'), which is a global emission data-set widely used by the scientific community. Some of the methods used in ECLIPSEv6a are described in the recent publication of Höglund-Isaksson et al. (2020). Ammonia emissions from all EU28 countries and
- 115 selected European non-EU countries are listed in Table 1.

In order to explore the effects that further emission reductions of ammonia in 2030 may have on $PM_{2.5}$ concentrations and nitrogen depositions, additional model sensitivity runs have been made. 2030 ammonia emissions have been reduced by up to 50% in steps of 10%. In addition the 2030 emissions of SO_x and NO_x have been reduced by 10%, and the 2005 ammonia emissions by 10%. All model runs are listed in Table 2.

120 4 Model results for 2005 versus 2030

4.1 PM_{2.5}

Figure 2 upper panels, shows concentrations of PM_{2.5} as calculated with 2005 emissions (upper left) and 2030 emissions (upper right). The high PM_{2.5} levels over North Africa in both 2005 and in 2030 are caused by large natural sources of mineral dust. As shown in Figure 2, substantial reductions in PM_{2.5} concentrations are expected from 2005 to 2030, caused by
reductions in ammonia emissions, and even larger reductions in SO_x and NO_x emissions, in Europe. Even so, in 2030 elevated PM_{2.5} concentrations still persist in some areas, notably in the Po Valley in Italy and the BeNeLux countries (Belgium, The Netherlands and Luxembourg). In these areas, anthropogenic primary PM_{2.5} and PM_{2.5} precursor emissions are expected to be exceeded in these locations also in 2030.

- Figure 1b shows the concentrations of SIA25 averaged over the EU28 countries in 2005, 2017, and 2030 split by component (sulphate, nitrate, and ammonia). Even if the reductions in ammonia emissions in EU28 are much smaller than the corresponding reductions in SO_x and NO_x , the calculated percentage contributions to SIA25 from ammonium are virtually unchanged between 2005, 2017, and 2030, confirming the findings in Aksoyoglu et al. (2020) for the Payern measurement site in Switzerland. The lack of change in the fraction of ammonium is not surprising, as it is either associated with sulphate ((NH_4)₂SO₄) or
- with nitrate (NH₄NO₃). As the molecular weight is 18 g/mol for NH₄, 96 g/mol for SO₄, and 62 g/mol for NO₃, the resulting percentage contribution by weight from NH₄ for both ammonium nitrate and ammonium sulphate is roughly 25%, consistent with the contributions shown in Figure 1b. Between 2005 and 2017 the percentage reductions in SO_x emissions in EU28 were more that twice as large as the reductions in NO_x, resulting in an increase in the nitrate fraction in SIA25. From 2017 to 2030 the EU28 reductions in NO_x are expected to be larger than for SO_x, resulting in a slight decrease in the fraction of nitrate, and a corresponding increase in the sulphate fraction in SIA25.
- a corresponding increase in the surpliate in

4.2 Deposition of reduced nitrogen

Figure 3 shows the depositions of reduced nitrogen in 2005 (left) and in 2030 (right). As for PM_{2.5}, the Po valley and the BeNeLux countries stand out, receiving large amounts of reduced nitrogen depositions both in 2005 and in 2030. The total amount of deposition of reduced nitrogen (and also oxidised nitrogen) per country in 2005, 2017, and 2030 are listed in
Table 1. In most central European high emitting countries less reduced nitrogen is deposited than they emit. Several countries facing the sea, with very few upwind sources, exemplified by Ireland and Portugal, receive far less deposition than they emit. At the same time the Nordic countries (Norway, Sweden, and Finland) and the Baltic countries (Estonia, Latvia, and Lithuania), located downwind of Central Europe, receive more depositions of reduced nitrogen than they emit. For the European Union as a whole, the fraction of deposited over emitted reduced nitrogen is between 0.7 and 0.8 for all 3 emission years considered. The remaining 0.2-0.3 is either deposited at sea or in non-EU countries. Only a small portion is advected out of the model domain.

As a result of the lower ambitions for reductions in ammonia emissions compared to NO_x emissions, a larger portion of the total nitrogen deposition is expected to come from ammonia. This is illustrated in Figure 4 which shows the fraction of reduced

nitrogen in the total nitrogen deposition calculated with 2005, 2017, and 2030 emissions. The figure shows that this fraction increases significantly from 2005 to 2017, with a further increase expected from 2017 to 2030. By 2030 the percentage of the
total nitrogen deposition resulting from ammonia emissions is expected to exceed 60% in large parts of Europe. The percentage contributions are also listed as an average for EU28, and as averages for European countries in Table 1. This underpins the findings from IIASA (2018), that the potential for further reductions of the exceedances of CL for eutrophication is mainly depending on our ability to control future ammonia emissions. As shown in Figure 5 the calculated CL for eutrophication are exceeded for all three years (2005, 2017, and 2030). Even though the level of exceedance has been substantially reduced from 2005 to 2017, and large reductions are expected also from 2017 to 2030, the total area in Europe where the CL is exceeded remains high for all three years. The percentage of the area where the CL for eutrophication are exceeded are listed in Table 3 for individual European countries.

4.3 Effects of ammonia emission controls.

Figures 2c and d show the effects of a further 10% reductions of ammonia emissions on PM2.5 concentrations in 2005 and

- 165 2030, respectively. Compared to 2005, the absolute effects of 10% further emission reductions in 2030 are smaller. Partially, this is because the percentage emission reductions in 2005 give a larger reduction in absolute numbers compared to percentage emission reductions based on the lower 2030 emissions. As an example, 10% of the emissions from EU in 2005 (3574Gg) will give a smaller reduction than 10% reductions in 2030 (2900Gg). However, these absolute changes in ammonia emissions are not large enough to explain a decrease of the magnitude seen in Figure 2c versus Figure 2d. As seen in Figure 6, there is
- 170 more 'free' ammonia (ammonia in excess of H_2SO_4 and HNO_3) in 2030 relative to 2005. A larger portion of free ammonia could partially explain the 2% - 4% annual increase observed by satellites between 2008 and 2018 in countries like Belgium, the Netherlands, France, Germany, Poland, Italy and Spain (Damme et al., 2020). A 10% reduction in ammonia emissions will make gradually smaller impact on the formation of ammonium in future years. This is exemplified by the EU28 countries in Table 4. For 2005, we find that as an annual average 10% reductions of ammonia emissions were about four times more
- 175 efficient than 10% reductions in NO_X and almost twice as efficient as SO_x in reducing $PM_{2.5}$ per Gg emitted. For 2030, we find that as an annual average the efficiency mitigating $PM_{2.5}$ concentrations by reducing ammonia emissions by 10% has been reduced from 0.61 to 0.22 ngNm⁻³ per Gg ammonia emitted, a reduction of a factor of about 2.6 from 2005. Over the same timespan, the efficiency of a further 10% reduction in NO_x emissions has gone up by about a factor of 1.8 (from 0.15 to 0.27) and by about a factor of 1.6 (0.37 to 0.58) for a 10% further reduction in SO_x emissions.
- The dry deposition of ammonia is faster than that of ammonium. As the fraction of ammonia in total reduced nitrogen increases from 2005 to 2030 (as discussed in Section 4.1), reduced nitrogen may be deposited closer to its sources and potentially increasingly more in the same country as it is emitted. A trend in deposition versus emissions for the individual countries (deposition divided by emissions in Table 1) is not readily seen based on the model calculations. The geographical extent of the countries in Europe is relatively small, and there is considerable variability in the emission trends for ammonia between
- 185 the individual EU28 countries, affecting the trends in the depositions also in neighbouring countries.

200

As a large portion of the emitted reduced nitrogen is deposited close to its sources, changes in emissions close to the EU28 outer geographical borders should affect this fraction more for EU28 as a whole than emission changes in central parts. Ammonia emissions in large EU28 countries as Germany and France have increased between 2005 and 2017, whereas emissions in several countries close to the eastern and southestern geographical EU28 borders, such as Bulgaria, Romania and

190 Greece, have decreased. For the EU28 countries as a whole the fraction of deposited over emitted reduced nitrogen is between 0.7 and 0.8 for all three years considered (2005, 2017 and 2030). It would be possible to investigate the hypothesis of a possible decrease of the transport distance of reduced ammonia by looking at so called source receptor matrices for the different years (e.g. studying how the contribution from the country to itself have changed over the years). Such experiments are planned as a follow-up of this paper.

195 4.3.1 Seasonal effects of ammonia emission reductions on $PM_{2.5}$

More than 90% of the ammonia emissions are from agriculture (IIASA, 2020), with low emissions in winter and a maximum in spring, as opposed to both NO_x and SO_x emissions peaking in winter. As a result, there are more sulphate and HNO_3 relative to ammonia in winter than in other seasons. Also the condensation process forming ammonium nitrate aerosols is favoured by low temperatures. As a result Figure 7 shows that for $PM_{2.5}$ by far the largest effects of further reductions of ammonia emissions are modelled for the winter months. Notably, most of $PM_{2.5}$ pollution episodes, including exceedances

- of the EU limits or WHO AQ guidelines for daily mean $PM_{2.5}$ concentrations, are most frequent in large parts of Europe during the winter period (see Tsyro et al. (2019)). The smallest effects are calculated for the summer months, when both SO_x and NO_x emissions are at a minimum. Furthermore ammonium nitrate is less stable in higher temperatures, and more likely to decompose into gaseous NH_3 and HNO_3 . Thus in summer, reductions are mainly confined to the southwestern parts of
- 205 the North Sea, where ship emissions of NO_x are large. This seasonal behaviour is also seen in the measurements at Preila in Lithuania, with low ammonium concentrations in summer and higher concentrations in the cold season (Davuliene et al., 2021). Furthermore, they found that the relative abundance of ammonium nitrate has increased at the expense of ammonium sulphate as a result of particularly large reductions in SO_x emissions in the last decades.

The seasonal behaviour of $PM_{2.5}$ formation from ammonia is also demonstrated for EU28 in Table 4 showing that the $PM_{2.5}$ reductions that can be achieved by reducing ammonia emissions are largest in winter, and are almost constant (and low) for each 10% increment in emission reduction in summer. With a large surplus of free ammonia in summer the impact of further emission reductions are small. In winter the ammonia surplus relative to HNO_3 and SO_4 is much smaller (or nonexistent), and additional ammonia emission reductions will have larger impacts on $PM_{2.5}$ levels.

4.3.2 Sensitivity tests with additional emission controls.

Figure 8 compares the efficiency of ammonia emissions reductions on top of the NEC2030 requirements on PM_{2.5} concentrations and reduced nitrogen depositions. Starting from the expected emission levels in 2030, the maps compare the effects of the first 10% reductions (Base - 10%) in ammonia emissions to the effects of further reductions in ammonia emissions from 40 - 50% relative to Base. If linear, the effects of these 10% increments in emissions should be equal. However, as shown in

Figure 8a, the reductions in PM_{2.5} are larger for the 50%–40% emission reductions compared to 10%–Base reductions almost
everywhere. This is further demonstrated in Table 4, listing the reductions in annual and seasonal PM_{2.5} concentrations as an average over the EU28 countries in steps of 10% relative to the 2030 NEC emissions. Both as an annual average, and for each season, the reductions in PM_{2.5} increase for each 10% increment. The reductions in PM_{2.5} increase from 0.23 ngm⁻³ per Gg ammonia emitted for the first 10% additional reductions, to 0.35 ngm⁻³ per Gg emitted for the 50%–40% reductions. The increase in efficiency is a result of a shift in the ratio in ammonia versus SO_x and NO_x emissions. In Table 4 we also show that with the much higher SO_x and NO_x emissions versus ammonia emissions, the potential of 10% additional reductions in ammonia emissions in curbing PM_{2.5} levels was substantially higher in 2005, even when compared to 40%–50% reductions in 2030.

In two additional model runs we separately reduce the 2030 emissions of SO_x and NO_x by 10%. As an annual average we find that 10% reductions in both SO_x and NO_x emissions will lead to larger reductions in $PM_{2.5}$ levels in EU28 than the corresponding 10% reductions in ammonia emissions. However, as discussed in section 4.3.1, the seasonal variation is large, and in winter reductions of $PM_{2.5}$ per Gg emitted could still be larger for ammonia than for NO_x .

For depositions of reduced nitrogen the situation is reversed. As shown in Figure 8b the reductions in depositions achieved with ammonia reduced between 50% and 40% compared to the first 10% reductions are (marginally) smaller in the vicinity of the source regions. This can be explained by a slightly larger portion of the emitted ammonia being converted to ammonium aerosols having a slower dry deposition rate than ammonia. As a result, the higher deposition seen in the source areas is compensated by a much smaller, but more widespread decrease elsewhere. Only a small portion of the reduced nitrogen is advected out of the model domain.

5 Conclusions

240

230

Focusing on the effects of ammonia emissions we have investigated how $PM_{2.5}$ concentrations and depositions of reduced nitrogen will change from 2005 to 2030, assuming that the NEC2030 emission targets will be met. In addition, we have made a sensitivity study for $PM_{2.5}$ for post NEC2030, assuming additional emission reductions on top of the NEC2030 requirements. Emissions of SO_x and NO_x have decreased in Europe from year 2005 to present, and further emissions reductions are expected by year 2030. However, ammonia emissions have so far remained high, and projected NEC2030 emission reductions

- of ammonia are much smaller than for SO_x and NO_x . Our model calculations show that these differences in emission trend lead to a smaller fraction of the emitted ammonia being converted to ammonium and an increasingly larger portion of free ammonia versus ammonium in the atmosphere in Europe. Based on 10% emission reductions of NH_3 , NO_x , and SO_x we calculate that the potential for $PM_{2.5}$ formation per Gg NH_3 emitted, is expected to drop by a factor of about 2.6 as an annual average between 2005 and 2030. Over the same timespan the potential for forming $PM_{2.5}$ from NO_x per Gg emitted has increased by a factor of 1.8, and from SO_x by a factor of 1.6 per Gg emitted.
- In winter, with low ammonia emissions and relatively higher NO_x and SO_x emissions, the ratio between NH_3 versus HNO_3 and SO_4 is higher, and a larger portion of the emitted ammonia will form particulate ammonium. Also, the formation of

ammonium nitrate in equilibrium with HNO₃ and NH₃ is favoured by low temperatures. As a result we find that in winter the effects of further reductions in ammonia emissions are larger than in other seasons, and comparable to additional reductions in SO_x and NO_x emissions. This is in agreement with the findings in Backes et al. (2016), pointing out that even though the ammonia emissions are highest in spring and summer due to the application of manure on the fields, emission reductions in winter have a stronger impact on the formation of secondary aerosols than in any other season. Furthermore they stated that the potential of reducing ammonia emissions in winter is highest through the reduction of animal farming, as this source accounts for about 80% of the ammonia emissions in the autumn and winter months.

Following the emissions reduction of ammonia, deposition of reduced nitrogen is decreasing in Europe. However, the reductions in NO_x emissions are much larger than for ammonia, resulting in a much faster decline in oxidised nitrogen deposition compared to reduced nitrogen. Thus the fraction of reduced over total deposition of nitrogen is increasing, and is expected to reach more than 60% in large parts of Europe by year 2030. The calculations show that with the existing emission projections the CL for nitrogen will be exceeded in large parts of Europe also in 2030. There are also indications that reduced nitrogen inputs are more effective in decreasing biodiversity than is oxidised nitrogen, as reduced nitrogen is more readily available, stimulating growth of specific plants at the expense others (see van den Berg et al. (2008) and Erisman et al. (2007) and refer-

ences therein). Furthermore they also suggest that increased levels of ammonium can be toxic to plants (see also Esteban et al. (2016)).

Reducing, and preferably removing, these exceedances, will require larger reduction in nitrogen emissions than currently projected. Given that reduced nitrogen is responsible for the major fraction of nitrogen depositions, the largest cuts should be made in the ammonia emissions.

For many countries the latest source oriented legislation may potentially reduce the emissions of SO_x and NO_x below their emission reduction requirements, and as a result EU28 as a whole could be on track to overshoot the reduction requirements for these species by 2030. But for ammonia further efforts are needed in order to meet the 2030 commitments for many countries in Europe (IIASA, 2018). Cost-effective measures to further reduce ammonia emissions differ among various parts of Europe.

- According to IIASA (2020) the damage cost estimate of 17.50 Euro per kg ammonia emitted is much higher than the average abatement costs. Also Giannakis et al. (2019) find that much more ambitious commitments for ammonia emission reductions could be applied by EU-28 countries with relatively minimal costs. According to Giannakis et al. (2019) low emission animal housing would be the least cost effective measure, but still a quarter of the costs of the avoided damage. However, this measure could be the most effective one to reduce emissions in winter, when $PM_{2.5}$ health related limits are the most likely to be
- 280 exceeded in Europe.

Code availability. The EMEP model version rv4.34 is available as open source code through https://doi.org/10.5281/zenodo.3647990(EMEP MSC-W, 2020).

Data availability. Model results are available upon request to first author

Author contributions. JEJ made the model calculations and wrote most of the paper. HF assisted in designing the model scenarios and in writing the paper. TS calculated the exceedances of critical loads for eutrophication and contributed in the writing of the paper.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. Computer time for EMEP model runs was supported by the Research Council of Norway through the NOTUR project EMEP (NN2890K) for CPU and the NorStore project European Monitoring and Evaluation Programme (NS9005K) for storage of data.

Financial support. This work has been partially funded by EMEP under the United Nations Economic Commission for Europe (UN ECE).

290 References

- Aksoyoglu, S., Jiang, J., Ciarelli, G., Baltensperger, U., and Prévôt, A. S. H.: Role of ammonia in European air quality with changing land and ship emissions between 1990 and 2030, Atmospheric Chemistry and Physics, 20, 15665–15680, https://doi.org/10.5194/acp-20-15665-2020, https://acp.copernicus.org/articles/20/15665/2020/, 2020.
- Backes, A. M., Aulinger, A., Bieser, J., Matthias, V., and Quante, M.: Ammonia emissions in Europe, part II:
- 295 How ammonia emission abatement strategies affect secondary aerosols, Atmospheric Environment, 126, 153 161, https://doi.org/https://doi.org/10.1016/j.atmosenv.2015.11.039, http://www.sciencedirect.com/science/article/pii/S135223101530546X, 2016.
 - Binkowski, F. and Shankar, U.: The Regional Particulate Matter Model .1. Model description and preliminary results, J. Geophys. Res., 100, 26 191–26 209, 1995.
- 300 CLRTAP: Chapter V of Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends., Tech. rep., UNECE Convention on Long-range Transboundary Air Pollution, https://www.umweltbundesamt.de/en/ manual-for-modelling-mapping-critical-loads-levels, 2017.
 - Colette, A., granier, C., Hodnebrog, Ø., Jacobs, H., Maurizi, A., Nyíri, A., bessagnet, B., D'Angiola, A., D'Isidoro, M., Gauss, M., Meleux, F., Memmesheimer, M., Mieville, A., Rouïl, L., Russo, F., Solberg, S., Stordal, F., and Tampieri, F.: Air quality trends in Europe over
- 305 the past decade: a first multi-model assessment, Atmos. Chem. Phys., 11, 11657–11678, https://doi.org/10.5194/acp-11-11657-2011, http://www.atmos-chem-phys.net/11/11657/2011/, 2011.
 - Colette, A., Granier, C., Hodnebrog, Ø., Jakobs, H., Maurizi, A., Nyiri, A., Rao, S., Amann, M., Bessagnet, B., D'Angiola, A., Gauss, M., Heyes, C., Klimont, Z., Meleux, F., Memmesheimer, M., Mieville, A., Rouïl, L., Russo, F., Schucht, S., Simpson, D., Stordal, F., Tampieri, F., and Vrac, M.: Future air quality in Europe: a multi-model assessment of projected exposure to ozone, Atmos. Chem. Phys., 12, 10613–10630, https://doi.org/10.5194/acp-12-10613-2012, http://www.atmos-chem-phys.net/12/10613/2012/, 2012.
- Damme, M. V., Clarisse, L., Franco, B., Sutton, M. A., Erisman, J. W., Kruit, R. W., van Zanten, M., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D., Clerbaux, C., and Coheur, P.-F.: Global, regional and national trends of atmospheric ammonia derived from a decadal (2008-2018) satellite record, Environmental Research Letters, http://iopscience.iop.org/article/10.1088/1748-9326/abd5e0, 2020.
- Davuliene, L., Jasineviciene, D., Garbariene, I., Andriejauskiene, J., Ulevicius, V., and Bycenkiene, S.: Long-term
 air pollution trend analysis in the South-eastern Baltic region, 1981–2017, Atmospheric Research, 247, 105191, https://doi.org/https://doi.org/10.1016/j.atmosres.2020.105191, http://www.sciencedirect.com/science/article/pii/S0169809520311273, 2021.
 - De Vries, W., Hettelingh, J.-P., and Posch, M., eds.: Critical Loads and Dynamic Risk Assessments: Nitrogen, Acidity and Metals in Terrestrial and Aquatic Ecosystems, Springer, Dordrecht, https://doi.org/10.1007/978-94-017-9508-1, 2015.
- 320 EEA: Effects of air pollution on European ecosystems, Tech. Rep. EEA 11/2014, available from www.eea.europa.eu/publications, European Environment Agency, Copenhagen, Denmark, https://doi.org/10.2800/18365, 2014.
 - EMEP Status Report 1/2020: Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components, EMEP MSC-W & CCC & CEIP, https://emep.int/publ/reports/2020/EMEP_Status_Report_1_2020.pdf, Norwegian Meteorological Institute (EMEP/MSC-W), Oslo, Norway, 2020.

- 325 Erisman, J., Bleeker, A., Galloway, J., and Sutton, M.: Reduced nitrogen in ecology and the environment, Environmental Pollution, 150, 140–149, https://doi.org/10.1016/j.envpol.2007.06.033, https://www.sciencedirect.com/science/article/pii/ S0269749107003089, 2007.
 - Esteban, R., Ariz, I., Cruz, C., and Moran, J. F.: Review: Mechanisms of ammonium toxicity and the quest for tolerance, Plant Science, 248, 92–101, https://doi.org/10.1016/j.plantsci.2016.04.008, https://www.sciencedirect.com/science/article/pii/ S0168945216300619, 2016.

- Gauss, M., Tsyro, S., Fagerli, H., Hjellbrekke, A.-G., Aas, W., and Solberg, S.: EMEP MSC-W model performance for acidifying and eutrophying components, photo-oxidants and particulate matter in 2015., Supplementary material to EMEP Status Report 1/2017, available online at www.emep.int, The Norwegian Meteorological Institute, Oslo, Norway, 2017.
- Gauss, M., Tsyro, S., Fagerli, H., Hjellbrekke, A.-G., Aas, W., and Solberg, S.: EMEP MSC-W model performance for acidifying and
 eutrophying components, photo-oxidants and particulate matter in 2016., Supplementary material to EMEP Status Report 1/2018, available
 online at www.emep.int, The Norwegian Meteorological Institute, Oslo, Norway, 2018.
 - Gauss, M., Tsyro, S., Benedictow, A., Fagerli, H., Hjellbrekke, A.-G., Aas, W., and Solberg, S.: EMEP MSC-W model performance for acidifying and eutrophying components, photo-oxidants and particulate matter in 2017., Supplementary material to EMEP Status Report 1/2019, available online at www.emep.int, The Norwegian Meteorological Institute, Oslo, Norway, 2019.
- 340 Gauss, M., Tsyro, S., Benedictow, A., Hjellbrekke, A.-G., Aas, W., and Solberg, S.: EMEP MSC-W model performance for acidifying and eutrophying components, photo-oxidants and particulate matter in 2018., Supplementary material to EMEP Status Report 1/2020, available online at www.emep.int, The Norwegian Meteorological Institute, Oslo, Norway, 2020.
- Giannakis, E., Kushta, J., Bruggeman, A., and Llieveld, J.: Costs andf benefits of agriculural ammonia emission abatement options for compliance with European air quality regulations, Environmental Sciences Europe, https://doi.org/10.1186/s12302-019-0275-0, https://doi.org/10.1186/s12302-019-0275-0, 2019.
 345 //enveurope.springeropen.com/articles/10.1186/s12302-019-0275-0, 2019.
 - Hettelingh, J.-P., Posch, M., and de Smet, P. e.: Multi-effect critical loads used in multi-pollutant reduction agreements in Europe, Water, Air and Soil Pollution, 130, 1133–1138, 2001.
 - Hettelingh, J.-P., Posch, M., and Slootweg, J.: European critical loads: database, biodiversity and ecosystems at risk., https://doi.org/10.21945/RIVM-2017-0155, CCE Final Report 2017. RIVM Report 2017-0155, 2017.
- 350 Höglund-Isaksson, L., Gómez-Sanabria, A., Klimont, Z., Rafaj, P., and Schöpp, W.: Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe –results from the GAINS model, Environmental Research Communications, 2, 025 004, https://doi.org/10.1088/2515-7620/ab7457, https://doi.org/10.1088%2F2515-7620%2Fab7457, 2020.
 - IIASA: Progress towards the achievement of the EU's air quality and emissions objectives, Tech. rep., IIASA (International Institute for Applied Systems Analysis), https://ec.europa.eu/environment/air/pdf/clean_air_outlook_overview_report.pdf, 2018.
- 355 IIASA: Assessment Report on Ammonia 2020. Draft April 2020, Tech. rep., IIASA (International Institute for Applied Systems Analysis), https://iiasa.ac.at/web/home/research/research/rograms/air/policy/Assessment_Report_on_Ammonia_20200410.pdf, 2020.
- Jiang, J., Aksoyoglu, S., Ciarelli, G., Baltensperger, U., and Prévôt, A. S.: Changes in ozone and PM2.5 in Europe during the period of 1990–2030: Role of reductions in land and ship emissions, Science of The Total Environment, 741, 140467, https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140467, https://www.sciencedirect.com/science/article/pii/
 S0048969720339899, 2020.
 - Jonson, J. E., Schulz, M., Emmons, L., Flemming, J., Henze, D., Sudo, K., Tronstad Lund, M., Lin, M., Benedictow, A., Koffi, B., Dentener, F., Keating, T., Kivi, R., and Davila, Y.: The effects of intercontinental emission sources on European air pollution levels, Atmo-

spheric Chemistry and Physics, 18, 13655–13672, https://doi.org/10.5194/acp-18-13655-2018, https://www.atmos-chem-phys.net/18/13655/2018/, 2018.

- 365 Karl, M., Jonson, J. E., Uppstu, A., Aulinger, A., Prank, M., Jalkanen, J.-P., Johansson, L., Quante, M., and Matthias, V.: Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models, Atmospheric Chemistry and Physics Discussions, 2019, 1–48, https://doi.org/10.5194/acp-2018-1317, https://www.atmos-chem-phys-discuss.net/acp-2018-1317/, 2019.
- Metzger, S., Steil, B., Abdelkader, M., Klingmüller, K., Xu, L., Penner, J. E., Fountoukis, C., Nenes, A., and Lelieveld, J.: Aerosol water parameterisation: a single parameter framework, Atmospheric Chemistry and Physics, 16, 7213–7237, https://doi.org/10.5194/acp-16-7213-2016, https://www.atmos-chem-phys.net/16/7213/2016/, 2016.
 - Metzger, S., Abdelkader, M., Steil, B., and Klingmüller, K.: Aerosol water parameterization: long-term evaluation and importance for climate studies, Atmospheric Chemistry and Physics, 18, 16747–16774, https://doi.org/10.5194/acp-18-16747-2018, https://www. atmos-chem-phys.net/18/16747/2018/, 2018.
- Nilsson, J. and Grennfelt, P., eds.: Critical Loads for Sulphur and Nitrogen, Nordic Council of Ministers, Copenhagen, Denmark, Nord 1988;97, 418pp., 1988.
- Petit, J.-E., Amodeo, T., Meleux, F., Bessagnet, B., Menut, L., Grenier, D., Pellan, Y., Ockler, A., Rocq, B., Gros, V., Sciare, J., and Favez, O.: Characterising an intense PM pollution episode in March 2015 in France from multi-site approach and near real time data: Climatology, variabilities, geographical origins and model evaluation, Atmospheric Environment, 155, 68 – 84, https://doi.org/https://doi.org/10.1016/j.atmosenv.2017.02.012, http://www.sciencedirect.com/science/article/pii/
- **380** \$1352231017300821, 2017.
 - Posch, M., Hettelingh, J.-P., and De Smet, P.: Characterization of critical load exceedances in Europe, Water, Air and Soil Pollution, 130, 1139–1144, 2001.

Reis, S., Grennfelt, P., Klimont, Z., Amann, M., ApSimon, H., Hettelingh, J., Holland, M., Le Gall, A., Maas, R., Posch, M., Spranger, T., Sutton, M., and Williams, M.: From acid rain to climate change, Science, 338, 1.153–1.154, https://doi.org/10.1126/science.1226514, 2012.

- Seinfeld, J. and Pandis, S.: Atmospheric chemistry and physics. From air polluition to climate change, John Wiley & Sons, Inc, 2016.
- Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L., Fagerli, H., Flechard, C., Hayman, G., Gauss, M., Jonson, J., Jenkin, M., Nyíri, A., Richter, C., Semeena, V., Tsyro, S., Tuovinen, J.-P., Valdebenito, A., and Wind, P.: The EMEP MSC-W chemical transport model – technical description, Atmos. Chem. Phys., 12, 7825–7865, https://doi.org/10.5194/acp-12-7825-2012, 2012.
- 390 Simpson, D., Bergström, Tsyro, S., and Wind, P.: Updates to the EMEP MSC-W model, 2019 2020, in: Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. EMEP Status Report 1/2020, pp. 155–165, The Norwegian Meteorological Institute, Oslo, Norway, 2020.
 - Slootweg, J., Posch, M., and Hettelingh (eds.), J.: Modelling and mapping the impacts of atmospheric deposition of nitrogen and sulphur, Tech. rep., CCE Status Report 2015. RIVM Report 2015-0193, Coordination Centre for Effects, Bilthoven, Netherlands, 182 pp, available at www.wge-cce.org, 2015.
- 395

^{Theobald, M. R., Vivanco, M. G., Aas, W., Andersson, C., Ciarelli, G., Couvidat, F., Cuvelier, K., Manders, A., Mircea, M., Pay, M.-T., Tsyro, S., Adani, M., Bergström, R., Bessagnet, B., Briganti, G., Cappelletti, A., D'Isidoro, M., Fagerli, H., Mar, K., Otero, N., Raffort, V., Roustan, Y., Schaap, M., Wind, P., and Colette, A.: An evaluation of European nitrogen and sulfur wet deposition and their trends estimated by six chemistry transport models for the period 1990–2010, Atmospheric Chemistry and Physics Discussions, 2018, 1–42, https://doi.org/10.5194/acp-2018-713, https://www.atmos-chem-phys-discuss.net/acp-2018-713/, 2018.}

⁴⁰⁰

415

425

- Tsyro, S. and Metzgert, S.: EQSAM4clim, in: Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. EMEP Status Report 1/2019, pp. 133-141, The Norwegian Meteorological Institute, Oslo, Norway, 2019.
- Tsyro, S., Aas, W., Solberg, S., Benedictow, A., Fagerli, H., and Scheuschner, T.: Status of transboundary air pollution in 2017, in: Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. EMEP Status Report 1/2019, pp. 17-42, The Norwegian Meteorological Institute, Oslo, Norway, 2019.

405

- Tsyro, S., Aas, W., Solberg, S., Benedictow, A., Fagerli, H., and Scheuschner, T.: Status of transboundary air pollution in 2018, in: Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. EMEP Status Report 1/2020, pp. 17-34, The Norwegian Meteorological Institute, Oslo, Norway, 2020.
- van den Berg, L., Peters, C., Ashmore, M., and Roelofs, J.: Reduced nitrogen has a greater effect than oxidised nitrogen on dry heathland veg-410 etation, Environmental Pollution, 154, 359-369, https://doi.org/https://doi.org/10.1016/j.envpol.2007.11.027, https://www.sciencedirect. com/science/article/pii/S0269749107005891, reduced Nitrogen in Ecology and the Environment, 2008.
 - Vieno, M., Heal, M. R., Twigg, M. M., MacKenzie, I. A., Braban, C. F., Lingard, J. J. N., Ritchie, S., Beck, R. C., Móring, A., Ots, R., Marco, C. F. D., Nemitz, E., Sutton, M. A., and Reis, S.: The UK particulate matter air pollution episode of March-April 2014; more than Saharan dust, Environmental Research Letters, 11, 044 004, https://doi.org/10.1088/1748-9326/11/4/044004, https://doi.org/10.1088% 2F1748-9326%2F11%2F4%2F044004, 2016.
- Vivanco, M. G., Theobald, M. R., García-Gómez, H., Garrido, J. L., Prank, M., Aas, W., Adani, M., Alyuz, U., Andersson, C., Bellasio, R., Bessagnet, B., Bianconi, R., Bieser, J., Brandt, J., Briganti, G., Cappelletti, A., Curci, G., Christensen, J. H., Colette, A., Couvidat, F., Cuvelier, C., D'Isidoro, M., Flemming, J., Fraser, A., Geels, C., Hansen, K. M., Hogrefe, C., Im, U., Jorba, O., Kitwiroon, N., Manders, A., Mircea, M., Otero, N., Pay, M.-T., Pozzoli, L., Solazzo, E., Tsyro, S., Unal, A., Wind, P., and Galmarini, S.: Modeled deposition of
- 420 nitrogen and sulfur in Europe estimated by 14 air quality model systems: evaluation, effects of changes in emissions and implications for habitat protection, Atmospheric Chemistry and Physics, 18, 10199–10218, https://doi.org/10.5194/acp-18-10199-2018, https://www. atmos-chem-phys.net/18/10199/2018/, 2018.
 - WHO: Air quality guidelines. Global update 2005. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide, http://www.who.int/phe/ health_topics/outdoorair/outdoorair_aqg/en/, World Health Organisation, European Centre for Environment and Health Bonn Office, ISBN 92 890 2192, 2005.

Table 1. Emissions (Em.) of NO_x and ammonia and depositions (Dep.) of oxidised and reduced nitrogen and the ratio of reduced versus total (reduced + oxidised) deposition of nitrogen. Emissions and deposition are listed in 100 Mg of N. (Bosnia H. is Bosnia and Herzegovina and N. Macedonia is North Macedonia.

	2005						2017				2030				
	Emis	sions	Depos	sitions	Red fr	Emissions		Depos	sitions	Red fr	Emis	sions	Depos	sitions	Red fr
Country	NO_x	NH_3	ox.N	red.N		NO_x	NH_3	ox.N	red.N		NO _x	NH_3	ox.N	red.N	
						28 EU	countries								
Austria	724	516	631	589	48	441	569	423	587	58	224	454	261	487	65
Belgium	968	620	326	339	51	536	550	218	320	59	397	539	144	299	67
Bulgaria	581	425	552	444	45	313	407	400	451	53	245	374	310	408	57
Croatia	265	392	412	370	47	167	310	281	331	54	114	294	198	306	57
Cyprus	64	62	26	20	43	46	53	23	22	49	29	49	21	22	51
Czechia	840	636	669	587	47	496	552	462	555	55	303	496	283	465	62
Denmark	627	729	295	359	55	340	629	212	319	60	200	554	134	277	67
Estonia	128	84	168	108	39	100	84	133	104	44	89	84	98	95	49
Finland	633	307	628	351	36	396	256	505	347	41	335	246	361	281	44
France	4322	4980	2939	3423	54	2456	4994	1899	3393	64	1340	4333	1199	3054	72
Germany	4821	5267	3542	3943	53	3616	5544	2493	4010	62	1687	3740	1501	3039	67
GB	5408	2343	1315	1177	47	2718	2332	844	1148	58	1460	1968	518	1042	67
Greece	1430	533	657	337	34	776	459	443	336	43	644	479	402	336	46
Hungary	536	709	595	560	48	362	722	421	550	57	114	482	274	442	62
Ireland	517	933	146	392	73	335	976	107	414	79	769	887	67	379	85
Italy	3896	3515	2258	2215	50	2158	3164	1467	2008	58	1364	2953	1081	1923	64
Latvia	128	123	267	202	43	113	136	219	209	49	85	122	152	179	54
Lithuania	189	257	311	300	49	161	243	254	297	54	93	231	172	266	61
Luxembourg	167	48	26	26	50	55	48	15	26	63	28	38	9	22	71
Malta	30	12	2	1	33	15	9	2	2	50	6	9	2	1	33
Netherlands	1242	1274	410	554	57	767	1088	308	545	64	484	1006	191	459	71
Poland	2645	2671	2406	2303	49	2447	2533	1945	2240	54	1614	2217	1237	1908	61
Portugal	816	516	306	242	44	484	474	216	233	52	302	439	146	219	60
Romania	992	1697	1192	1265	51	706	1353	888	1164	57	397	1273	640	1062	62
Slovakia	313	312	352	303	46	201	219	249	268	51	157	219	167	236	62
Slovenia	167	166	173	136	44	107	153	117	146	56	16	119	69	112	62
Spain	4151	4173	1866	1699	48	2249	4267	1167	2044	64	416	3388	667	1570	70
Sweden	560	477	931	610	40	377	439	746	680	48	190	396	478	491	51
EU28	32848	29440	23401	22855	49	22938	32562	16457	22648	58	12131	23882	10782	19380	64
						non EU	countries								
Switzerland	280	497	257	343	57	186	454	171	373	69	189	446	123	302	71
Iceland	88	26	39	26	40	70	43	43	37	46	17	33	28	25	47
Norway	660	179	486	247	34	496	275	408	307	43	281	192	274	214	44
Albania	76	138	123	86	41	76	199	92	124	57	72	197	78	103	57
Turkey	2042	2355	2382	1626	41	2389	6092	2139	3822	64	2421	3992	2074	2555	55
Bosnia H.	100	130	286	225	44	94	175	198	240	55	103	205	147	215	59
N. Macedonia	113	65	121	69	36	73	84	80	76	49	73	58	70	65	48
Serbia	508	467	502	389	44	450	535	359	432	55	213	250	198	306	61
Montenegro	24	19	55	39	41	43	17	42	35	45	13	16	33	37	53

Table 2. Model runs performed. Base denotes model runs with all emissions for the years 2005, 2017, and 2030. For 2005 emissions in EU28 are based on EMEP 2005 official emissions. Remaining land based emissions from ECLIPSEv6a. For 2017 all emissions are as reported in EMEP Status Report 1/2020 (2020) appendix B. For 2030 EU28 emissions are scaled according to the NEC2030 obligations based on the 2005 emissions. Remaining land based emissions from Eclipse v6a. Emissions and model runs are also described in section 3. The additional model sensitivity runs reducing the emissions in steps of 10% are also listed.

			percentage emission reductions											
Year	Base		NH ₃ NO											
		-10%	-20%	-30%	-40%	-50%	-10%	-10%						
2005		\checkmark	\checkmark				\checkmark	\checkmark						
2017														
2030		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						

Table 3. Exceedance of CL for Eutrophication (CLex eut.) by deposition (Dep.) of ammonia and reduced nitrogen. Exceedance are expressed as share [%] of the receptor area.

Eco Area CLex eut.[%]											
Country	1000 km2	2005	2017	2030							
28 EU countries											
Austria	50.4	73.5	56.6	29.7							
Belgium	9.2	100.0	100.0	99.5							
Bulgaria	48.9	99.9	99.5	98.1							
Croatia	32.7	99.0	94.3	84.6							
Cyprus	1.6	100.0	100.0	100.0							
Czechia	6.4	100.0	99.6	86.1							
Denmark	5.1	100.0	100.0	97.9							
Estonia	18.9	80.6	75.7	42.0							
Finland	40.9	10.2	7.8	0.9							
France	176.3	78.0	62.0	46.1							
Germany	101.3	83.6	77.0	64.7							
Greece	64.4	98.0	94.1	93.2							
Hungary	22.8	98.3	96.5	77.3							
Ireland	12.8	25.0	22.2	14.8							
Italy	105.7	77.6	60.0	48.7							
Latvia	30.7	96.9	95.1	78.2							
Lithuania	19.1	99.7	99.2	96.3							
Luxembourg	1.0	100.0	100.0	100.0							
Malta	<1	94.8	94.8	94.8							
Netherlands	0.4	85.2	78.3	70.0							
Poland	91.2	78.2	70.8	48.5							
Portugal	33.9	98.5	93.0	85.4							
Romania	95.0	96.5	93.8	82.7							
Slovakia	21.8	99.8	98.3	92.5							
Slovenia	10.5	100.0	99.8	87.8							
Spain	195.8	99.7	98.2	95.2							
Sweden	58.6	14.3	12.8	8.4							
United Kingdom	54.3	32.5	18.0	9.2							
EU28	1,309.7	80.4	73.3	62.5							
1	ion EU count	ries	07.0	01.0							
Albania	17.4	88.3	87.0	81.8							
Belarus Bosnia & Horzogovina	55.0 20.7	87.2	80.0	99.5							
Kosovo	29.7	07.5 75 7	66.6	55.2							
Liechtenstein	4.0	100.0	00.0	100.0							
North Macedonia	13.1	70.0	60.0	61.0							
Moldova Rep. of	3.4	88.0	87.7	73.3							
Montenegro	7.0	77.8	67.1	60.7							
Norway	302.6	11.8	10.1	3.8							
Russia	607.2	56.8	54.0	39.6							
Serbia	28.9	94.8	89.8	75.4							
Switzerland	7.5	82.1	74.3	55.5							
Ukraine	91.2	99.8	99.8	98.6							
Europe	2,476.8	67.7	62.8	52.3							
		1									

Table 4. First column listing annual and seasonal concentrations of $PM_{2.5}$ as an average for the EU28 countries. Column 2 - 5 are listing the EU28 average reductions calculated in steps of 10% reductions in ammonia emissions. For $PM_{2.5}$ the reductions in ngNm⁻³ per Gg of reduction of ammonia emissions are shown In brackets. The Corresponding effects of 10 and 20% reductions of ammonia emissions in 2005 are also shown. The effects of 10% reductions of SO_x and NO_x emissions in 2030 are also listed. The reductions in PM_{2.5} in ngNm⁻³ per Gg emitted are given in brackets with ammonia counted as NH₃ with molecular weight 17), NO_x counted as NO₂ with molecular weight 46 and SO_x counted as SO₂ with molecular weight 64.

	1	1												
Season	Conc.	10% – Base	20% - 10%	30% - 20%	40% - 30%	50% - 40%								
	$\mu { m gm}^{-3}$	$\mu { m gm}^{-3}$	$\mu { m gm}^{-3}$	$\mu { m gm}^{-3}$	$\mu { m gm}^{-3}$	$\mu { m gm}^{-3}$								
	$\mathbf{PM}_{2.5}$ 2030, NH_3 reductions													
Annual	4.45	-0.066 (0.23)	-0.074 (0.26)	-0.082 (0.28)	-0.092 (0.32)	-0.103 (0.35)								
Winter	5.31	-0.126 (0.44)	-0.142 (0.49)	-0.160 (0.55)	-0.180 (0.62)	-0.202 (0.70)								
Spring	3.90	-0.055 (0.19)	-0.061 (0.21)	-0.068 (0.23)	-0.77 (0.26)	-0.087 (0.30)								
Summer	4.23	-0.015 (0.05)	-0.016 (0.06)	-0.016 (0.06)	-0.017 (0.06)	-0.018 (0.07)								
Autumn	4.39	-0.069 (0.24)	-0.076 (0.26)	-0.086 (0.30)	-0.096 (0.33)	-0.108 (0.37)								
$\mathbf{PM}_{2.5}$ 2030, NO_{x} reductions														
Annual	4.45	-0.094 (0.27)												
Winter	5.31	-0.112 (0.32)												
Spring	3.90	-0.105 (0.30)												
Summer	4.23	-0.051 (0.15)												
Autumn	4.39	-0.106 (0.38)												
	1	F	M _{2.5} 2030,SO _x	reductions										
Annual	4.45	-0.085 (0.58)												
Winter	5.31	-0.101 (0.69)												
Spring	3.90	-0.082 (0.56)												
Summer	4.23	-0.071 (0.48)												
Autumn	4.39	-0.086 (0.59)												
	I	1												
		Р	$M_{2.5}$ 2005, NH ₃	reductions										
Annual	8.87	-0.22 (0.61)	-0.23 (0.64)											

Annual	8.87	-0.22 (0.61) -0.23 (0.64)									
PM _{2.5} 2005, NOx reductions											
Annual	8.87	-0.16 (0.15)									
$PM_{2.5}$ 2005, SOx reductions											
Annual	8.87	-0.24 (0.37)									

Figure 1. a: Emissions of SO_x as SO₂, NO_x as NO₂, and ammonia as NH₃ summed up for the EU28 countries. Percentage change in emissions from 2005 are given above the bars. b: Concentrations of SIA (μ gm⁻³) split into sulphate, nitrate, and ammonium and averaged over the EU28 countries. Percentage contributions to SIA are printed inside the bars.

Figure 2. $PM_{2.5}$ in 2005 (a), and in 2030 (b). Effects of 10% further reductions in NH₃ emissions in 2005 (c) and in 2030 (d) [μ gm⁻³].

c) 2030, Frac redN/totN

Figure 4. Fraction of reduced N deposition relative to total N (reduced pluss oxidised nitrogen) deposition, calculated with year 2005, 2017 and 2030 emissions.

a) Exceedances in 2005 b) Exceedances in 2017 c) Exceedances in 2030 Figure 5. Calculated exceedances of CL for eutrophication (eq ha⁻¹y⁻¹) in 2005, 2017, and 2030.

Figure 6. Fraction of NH₃ in reduced N (ammonia + ammonium) in 2005, 2017, and 2030.

Figure 7. Effects of a 10% decrease in 2030 ammonia emissions on $PM_{2.5}$ [μ gm⁻³] split by season. Winter: December, January, February. Spring: March, April, May. Summer: June, July, August. Autumn: September, October, November.

Figure 8. Difference between additional 50% – 40% reduction and additional 10% – Base in ammonia emissions on top of NEC 2030 for $PM_{2.5}$ concentrations [μgm^{-3}] (a), and deposition of reduced nitrogen [$mg(N)m^{-2}$] (b).

Appendix A

In this appendix we show scatter-plots of EMEP model results versus measurements for some key species for the years 2005 and 2017. Several of the 2017 scatter-plots have already been published in Gauss et al. (2019), but are shown here in order to provide a direct comparison to the year 2005 results. For year 2017 the comparison to measurements differ slightly from 430 the results shown in Gauss et al. (2019) as several new measurements have been made available since the publication of the above-mentioned report. For both years the scatter plots are shown with all measurements included. However, the selection of available measurements differs between the two years. In general there are more measurements available in 2017 compared to 2005. In Table A1 statistics for the scatter plots are listed for the same species as in the scatter plots, limiting the sites to those having measurements for both 2005 and 2017. The number of common measurements for both years are given in the table. In particular for ammonia in air and HNO_3 in air there are very few sites with measurements for both years.

435

Table A1. Year 2005 and year 2017 statistics for scatter plots with common measurements sites for both years. Obs is observed annual meal for the sites include. Bias is model bias and Corr. is correlation between measurements and the model calculations.

			2005			2017	
Species	Nr. obs.	obs.	Bias	Corr.	obs.	Bias	Corr.
$PM_{2.5}$	14	11.34	-14%	0.57	7.75	-18%	0.84
Ammonium in air	13	0.94	-19%	0.94	0.57	-18%	0.89
NO_3^- in air	13	1.68	5%	0.71	1.44	-5%	0.80
Ammonia in air	7	0.76	26%	0.78	0.73	40%	0.90
HNO_3 in air	6	0.16	-12%	0.84	0.14	-33%	0.91

Figure A1. Scatter plots of modelled versus observed concentrations of ammonia (top) and ammonium (bottom) in air for the years 2005 (left) and 2017 (right). Statistics with limited set of common measurement sites are given in Table A1. Site positions listed in Tables A2 and A3. Measurements downloaded from http://ebas.nilu.no/default.aspx.

Figure A2. Scatter plots of modelled versus observed concentrations of nitric acid (top) and nitrate (bottom) in air for the years 2005 (left) and 2017 (right). Statistics with limited set of common measurement sites are given in Table A1. Site positions listed in Tables A2 and A3. Measurements downloaded from http://ebas.nilu.no/default.aspx.

c) Wet deposition of oxidised nitrogen $(mg(N)m^{-2} \text{ in } 2005)$

c) Wet deposition of oxidised nitrogen $(mg(N)m^{-2} \text{ in } 2017)$

Figure A3. Scatter plots of modelled versus observed wet depositions of reduced nitrogen (top) and oxidised nitrogen (bottom) for the years 2005 (left) and 2017 (right). Statistics with limited set of common measurement sites are given in Table A1. Site positions listed in Tables A2 and A3. Measurements downloaded from http://ebas.nilu.no/default.aspx.

Figure A4. Scatter plots of modelled versus observed concentrations of sulphate in air (top) and wet deposition of sulphate (bottom) for the years 2005 (left) and 2017 (right). Statistics with limited set of common measurement sites are given in Table A1. Site positions listed in Tables A2 and A3. Measurements downloaded from http://ebas.nilu.no/default.aspx.

Table A2. List of sites included in scatter plots in Figures A1 to A4. Wet depositions when included for all three species (reduced nitrogen, oxidised nitrogen, and oxidised sulphur) marked with $\sqrt{}$. Only reduced and oxidised nitrogen marked with ∇ , only oxidised N and S marked with \triangle , only reduced N and oxidised S marked with \bullet , and only oxidised sulphur marked with \diamond .

Site	Lat.	Lon.	NH ₃		$\rm NH_4^-$		HNO_3		NO_3^-		We	lep
			2005	2017	2005	2017	2005	2017	2005	2017	2005	2017
IS0002	64.08	-21.02									\$	\triangle
NO0001	58.38	8.25	\checkmark				\checkmark		\checkmark		\checkmark	\checkmark
NO0002	58.38	8.22		\checkmark		\checkmark		\checkmark		\checkmark		
NO0008	58.82	6.72									\checkmark	
NO0015	65.83	13.92	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
NO0042	78.91	11.89	\checkmark		\checkmark	\checkmark	\checkmark					
NO0055	64.47	25.22	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark	
NO0056	60.37	11.08	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
SE0005	63.85	15.33		\checkmark		\checkmark		\checkmark		\checkmark		\checkmark
SE0012	58.80	17.38		\checkmark		\checkmark		\checkmark		\checkmark		
SE0014	57.39	11.91		\checkmark		\checkmark		\checkmark		\checkmark	\checkmark	\checkmark
SE0020	56.04	13.15		\checkmark		\checkmark		\checkmark		\checkmark		
DK0003	56.35	9.60	\checkmark	\checkmark	\checkmark	\checkmark						
DK0005	54.75	10.74	\checkmark									
DK0008	56.70	11.52	\checkmark	\checkmark	\checkmark	\checkmark						
DK0012	55.69	12.09		\checkmark		\checkmark						
DK0031	56.30	8.43	\checkmark									
FI0009	59.78	21.38		\checkmark		\checkmark		\checkmark		\checkmark		
FI0017	60.52	27.69			\checkmark							
FI0018	60.53	27.67		\checkmark		\checkmark		\checkmark		\checkmark		
FI0036	68.00	24.24		\checkmark		\checkmark		\checkmark		\checkmark		
EE0009	59.50	25.90								\checkmark	∇	\checkmark
LV0010	56.16	21.17		\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
LV0016	57.14	25.91			\checkmark				\checkmark		\checkmark	
LT0015	55.37	21.03				\checkmark				\checkmark	\checkmark	\checkmark
RU0001	68.93	28.85							\checkmark			\checkmark
RU0013	64.70	43.40									\checkmark	\checkmark
RU0018	61.00	28.97			\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
RU0020	56.53	32.94								\checkmark	\checkmark	\checkmark
BY0004	52.23	23.43									\checkmark	\checkmark
IE0001	51.94	-10.24									\checkmark	\checkmark
IE0005	52.87	-6.92			\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
IE0006	55.38	-7.34				\checkmark			$ $ \checkmark	\checkmark		\checkmark
IE0008	52.18	-6.36				\checkmark			$ $ \checkmark	\checkmark		
IE0009	52.30	-6.51										\checkmark
GB0002	55.31	-3.20									\checkmark	
GB0048	55.79	-3.24										\checkmark
GB1055	51.15	-1.44										\checkmark
NL0009	68.00	24.24			\checkmark				\checkmark		\checkmark	\checkmark
NL0010	51.54	5.85	\checkmark		\checkmark				\checkmark			
NL0091	68.00	24.24			\checkmark				\checkmark			\checkmark
DE0001	54.93	8.31	\checkmark		\checkmark		\checkmark		\checkmark			
DE0002	52.80	10.76	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
DE0007	53.17	13.03	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
DE0009	54.44	12.72	\checkmark				\checkmark					

 Table A3. See caption, Table A3

Site	Lat.	Lon.	NH_3		NH_{4}^{-}		HNO_3		NO_3^-		We	lep
			2005	2017	2005	2017	2005	2017	2005	2017	2005	2017
PL0002	51.81	21.97			\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	
PL0004	54.75	17.53			\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
PL0005	54.15	22.07		\checkmark		\checkmark		\checkmark		\checkmark	\checkmark	\checkmark
CZ0003	49.47	15.08									\checkmark	\checkmark
SK0004	49.15	20.28								\checkmark	\checkmark	
SK0005	49.37	19.68					\checkmark		\checkmark			
SK0006	49.05	22.67		\checkmark		\checkmark						
SK0007	47.96	17.86					\checkmark		\checkmark			
CH0002	46.81	6.94									\checkmark	
CH0005	47.07	8.46									\checkmark	
AT0002	47.77	16.77	\checkmark				\checkmark		\checkmark		\checkmark	
AT0005	46.48	12.97									\checkmark	
AT0048	47.84	14.44									\checkmark	
HU0002	46.97	19.58	\checkmark	\checkmark	$ $ \checkmark	\checkmark	\checkmark	\checkmark	\bigvee	\checkmark	\checkmark	\checkmark
HU0003	46.91	16.32		\checkmark		\checkmark		\checkmark		\checkmark		\checkmark
MD0013	46.49	28.28		\checkmark		\checkmark		\checkmark		\checkmark		\checkmark
ES0001	42.32	3.32										\checkmark
ES0006	39.88	4.32										\checkmark
ES0007	37.24	-3.53									\checkmark	\checkmark
ES0008	43.44	-4.85									\checkmark	\checkmark
ES0009	41.27	-3.14									\checkmark	\checkmark
ES0011	38.47	-6.92									\checkmark	\checkmark
ES0012	39.08	-1.10									\checkmark	\checkmark
ES0013	41.24	-5.90									\checkmark	\checkmark
ES0014	41.39	-0.73									\checkmark	\checkmark
ES0015	39.52	-4.35									\checkmark	•
ES0016	42.63	-7.70									\checkmark	\checkmark
ES0017	37.05	-6.51										\checkmark
FR0008	48.50	-7.13									\checkmark	\checkmark
FR0009	49.90	4.63									\checkmark	\checkmark
FR0010	47.27	4.08									\checkmark	\checkmark
FR0012	43.03	-1.08									\checkmark	
FR0013	43.62	0.18									\checkmark	\checkmark
FR0014	47.30	6.83									\checkmark	\checkmark
FR0015	46.65	-0.75									\checkmark	\checkmark
FR0016	45.00	6.47									\checkmark	\checkmark
FR0017	45.80	2.07									\checkmark	\checkmark
FR0018	48.63	-0.45										\checkmark
IT0001	42.10	12.63	\checkmark		\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	
IT0004	45.80	8.63									\checkmark	\checkmark
SI0008	45.47	14.87		\checkmark		\checkmark		\checkmark		\checkmark	\checkmark	\checkmark
ME0008	43.15	19.13										•
RS0005	43.40	21.95									\checkmark	
TR0001	40.00	33.00	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark	
GE0001	41.76	42.83		\checkmark				\checkmark		\checkmark		
AM0001	40.38	44.26		\checkmark		\checkmark		\checkmark		\checkmark		